Dimensionless Numbers in Fluid Mechanics/Heat Transfer and							
Their Significance							
	Dimensionless Number	Formula			Sig	nificance	
Reynolds Number, Re = $\frac{duL}{\mu} = \frac{uI}{v}$		<u>L</u>	Inertial Forces Viscous Forces		 Ratio of Inertial forces to viscous forces. Primarily used to analyzed to analyzed ifferent flow regimes not Laminar, Turbulent, or be When Viscous forces are dominant it's a laminar for when Inertial forces are dominant it is a Turbuler 	to ze amely ooth. re flow & nt flow.	
Prandtl Number, Pr = $\frac{c_p \mu}{k} = \frac{v}{\alpha}$			<u>Momentum Diffusivity</u> Heat Diffusivity		 Depends only on fluid & properties. It is also ratio velocity boundary layer thermal boundary layer Pr = small, implies that thermal diffusion (heat) more than the rate of momentum diffusion (velocity boundary layer is much l than the velocity boundar layer. 	& its o of to rate of is elocity). hermal larger ary	
	Prandtl Number		He	at Transfer Condition		Correlation	
	Pr < 0.1 (e.g. liquid m	ietals)	0	Constant Heat Rate	Nu	I= 6.3+.003(RePr)	
	Pr < 0.1 (e.g. liquid m	ietals)	С	Constant Temperature Nu:		= 4.8 + .003(RePr)	
	0.5 < Pr < 1 (e.g. ga	ises)	0	Constant Heat Rate Nu =		= 0.022(Re ^{0.8} Pr ^{0.6})	
	0.5 < Pr < 1 (e.g. gases)		Constant Temperature Nu =		= 0.021(Re ^{0.8} Pr ^{0.6})		
	1.0 < Pr < -20 (e.g. water & light liquids)			All Nu=		= 0.0155(Re ^{0.83} Pr ^{0.5})	
	$Pr > \sim 20$ (e.g. oils & viscous liquids)		All Nu=		= 0.0118(Re ⁰⁹ Pr ⁰³)		
$Pr^{1/3} = \frac{\delta}{\delta_t}$							

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their Significance – Cont'd				
Dimensionless Number	Formula	Sig	nificance	
Schmidt Number, Sc =	$\frac{\mu}{\rho D_{AB}}$	<u>Momentum Diffusivity</u> Mass Diffusivity	 Analogous of Prandtl number in Heat Transfer. Used in fluid flows in which there is simultaneous momentum & mass diffusion. It is also ratio of fluid boundary layer to mass transfer boundary layer thickness. To find mass transfer coefficient using Sherwood number, we need Schmidt number. 	
Euler Number, Eu =	$\frac{\Delta P}{\rho V^2}$	Pressure Energy Kinetic Energy	Used in fluid flow calculations where local pressure drop is necessary (dp = upstream pressure - downstream pressure) •Used to characterize the losses in the flow. •Eu = 1 corresponds to a perfect frictionless fluid flow.	
Cavitation Number, Ca =	$\frac{P-P_v}{\frac{1}{2}\rho V^2}$	<u>local absolute P – vapor P</u> KE	It gives the possibility / potential of a fluid to cavitate. •If Ca < 0, Cavitation occurs & if Ca > 0 no cavitation will occur, since the condition to avoid cavitation is that the minimum pressure (Pmin)within the entire pump should be greater than the vapor pressure (Pv) of the fluid at that temperature. (Pmin > Pv)	

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their					
Significance – Cont'd					
Dimensionless Number	Formula	Sig	gnificance		
Froude Number, Fr =	$\frac{V}{\sqrt{gL}}$	<u>Inertial Forces</u> Gravity Forces	It is the ratio of mean flow velocity to the speed of small gravity wave along the water surface. •It is an indication of resistance to partially submerged object moving through to water. •Greater Fr value, greater is the resistance to flow. •Fr < 1 indicates subcritical flow (tranquil flow) •Fr > 1 indicates supercritical flow (rapid flow) •Fr = 1 indicates critical flow. •Used in ship design i.e. to analyze water flow around ships. •Inverse of the square of Fr is called Richardson Number (importance of natural convection to forced convection)		
Mach Number, M or Ma =	v C	Gas Velocity Speed of Sound	To check whether the fluid can be considered compressible or not. •If M < 0.2-0.3, then the fluid medium can be considered steady & isothermal & hence incompressible. •Used for fluids flowing with high speeds in channels, nozzles, diffusers etc. •It is analogous to Froude Number C = speed of sound = 345m/s (at 15 deg. Celsius temperature)		

Mach Number	Regime
<1	Subsonic
= 1	Sonic
0.8 - 1.2	Transonic
1.2 – 5	Supersonic
5 - 10	Hypersonic
> 10	High - Hypersonic

Dimensionless Number	Formula	Sig	nificance
Cauchy Number, C =	<u>ρV²</u> <u>K</u>	Inertial Forces Compressible Forces	It is the square of Mach number (Mach number can also be expressed in terms of bulk modulus as the square root of Cauchy number number). •Used to study compressible flow. K = bulk modulus of elasticity
(A)Fanning Friction Factor, f =	$\frac{\tau_W}{\frac{1}{2}\rho V^2}$	Wall Stress Momentum Flux	•Used to study fluid friction in pipes.
(B) Fanning Friction Factor, f =	$\frac{e_f D}{2V^2L}$	$\frac{Energy\ Dissipated}{KE\ of\ Flow}\ X\ \frac{4L}{D}$	Tw = wall stress ef = friction loss Darcy Friction Factor (f_D) =4f
Weber Number, We =	$\frac{\rho V^2 L}{\sigma}$	Inertia Force Surface Tension Force	 Useful in analyzing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surface. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their				
Significance – Cont'd				
Dimensionless Number	Formula		Significance	
Pressure Coefficient, C _P =	$\frac{\Delta P}{(\frac{\rho u^2}{2})}$	Pressure Force Inertial Force	Describes the relative pressures throughout a flow field in fluid dynamics.	
Drag Coefficient, C _D =	$\frac{F_D}{(\frac{\rho u^2}{2})}$	Total Drag Force Inertial Force	Used to quantify the drag or resistance of an object in a fluid environment, such as air or water.	
Lift Coefficient, CL =	$\frac{L}{qS}$	Lift Force Inertial Force	Relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area.	
Stokes Number, Stk or S _K =	$\frac{\tau U_0}{d_c}$		Commonly used in particles suspended in fluid. •For <i>Stk</i> << 1, the particle negotiates the obstacle. •For <i>Stk</i> >> 1, the particle travels in straightline and eventually collides with obstacle.	
Eckert Number, E _c =	$\frac{u^2}{c_p \Delta T}$	KE Enthalpy	Eckert number represents the kinetic energy of the flow relative to the boundary layer enthalpy difference. <i>Ec</i> plays an important role in high speed flows for which viscous dissipation is significant	
Graetz number, Gz =	$rac{D_{H}}{L}RePr$		Characterizes laminar flow in a conduit •A Graetz number of approximately 1000 or less is the point at which flow would be considered thermally fully developed.	
Grashof number, Gr∟ =	$\frac{g\beta(T_s-T_\infty)L^3}{v^2}$	Bouyancy Viscous Force	Heat transfer=>natural convection.	
Knudsen number, Kn =	$\frac{\lambda}{L}$	Mean Free Path Length	Ratio of gas molecule mean free path to process length scale Indicates validity of line of sight (> 1) or continuum (< 0.01) gas models	

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their				
Significance – Cont'd				
Dimensionless Number	Formula	S	ignificance	
Bond Number, Bo =	$rac{ ho g L^2}{\sigma}$	Bouyant Force Capillary Force	Measuring the importance of surface tension forces compared to body forces and is used (together with Morton number) to characterize the shape of bubbles or drops moving in a surrounding fluid.	
Morton Number, Mo =	$\frac{g\mu^4}{\Delta\rho\sigma^3} = \frac{We^3}{FrRe^4}$		Used together with the Bond number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c.	
Peclet Number, Pe =	Heat transfer: Re∟Pr = $\frac{Lu}{\alpha}$	advective transport rate dif fusive transport rate	Ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate gradient. The thermal Peclet number is equivalent to the product of the Reynolds number and the Prandtl number.	
Rayleigh Number, Ra =	GrPr = $\frac{g\beta(T_{hot} - T_{ref})L^3}{\nu\alpha}$	buoyancy viscous x rate of heat diffussion	When the Rayleigh number is below a critical value for that fluid, heat transfer is primarily in the form of conduction; when it exceeds the critical value, heat transfer is primarily in the form of convection.	
Bejan number, Be =	$\frac{\Delta P L^2}{\mu \upsilon}$		Dimensionless pressure drop along a channel of length L. υ = momentum diffusivity In the context of heat transfer υ is replaced by α the thermal diffusivity.	

914-241-2048

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their Significance – Cont'd

Dimensionless Number	Formula	Significa	nce
Hagen, Hg =	$-\frac{dP}{dx}\frac{\rho L^3}{\mu^2}$		It is the forced flow equivalent of Grashof number.
Nusselt, Nu =	$\frac{hd}{k}$	Convection Conduction	Nusselt number represents the dimensionless temperature gradient at the solid surface.
Biot, Bi =	$\frac{hL}{k_b}$	conductive resistance within the object convective heat transfer resistance across the object's boundary	Used in unsteady state (transient) heat transfer conditions. •ratio of heat transfer resistance inside the body to heat transfer resistance at the surface of the body. OR ratio of internal thermal resistance to external thermal resistance. •Shows the variation of temperature inside the body w.r.t to time. •Bi < 0.1 => heat transfer resistance inside the body is very low => inside the body conduction takes place faster compared to convection at the surface. => no temperature gradient inside the body (uniformity in temperature) vice versa implies that Temperature is not uniform throughout the material volume.

Mig-Tech Fluidics Design

<u>www.fluidicsdesign.com</u> 914-241-2048

Dimensionless Numbers in Fluid Mechanics/Heat Transfer and Their Significance – Cont'd

	Nomenclature:
μ => fluid absolute viscosity	k => thermal conductivity
v => fluid kinematic viscosity	c _P => specific heat
$\sigma =>$ surface tension	g => gravitational acceleration
ρ => fluid density	h => heat transfer coefficient
$\Delta \rho \Rightarrow$ difference in density of the two phases	D _{AB} => mass diffusivity coefficient
α => thermal diffusivity	u, V => characteristic velocity scale
υ => momentum diffusivity	c => speed of sound
λ => mean free path	S => relevant plan area
L => length	q => fluid dynamic pressure
d => diameter	F _D => total drag force
$\delta =>$ velocity boundary layer	θ => volumetric thermal expansion coefficient
δ_t => thermal boundary layer	ΔT => characteristic temperature difference
P => pressure	$T_{\infty} \Rightarrow$ quiescent temperature of the fluid
ΔP => characteristic pressure difference of	T _s => surface temperature
flow	T _{hot} => temperature of the hot wall
$P_v \Rightarrow$ vapor pressure	T _{ref} => reference/surface temperature
$\frac{dP}{dx}$ => pressure gradient	

References and Sources

<u>Books</u>

Applied Fluid Dynamics Handbook by Robert D. Blevins Fluid Mechanics by Frank White Fox and McDonald's Introduction to Fluid Mechanics by Philip J. Pritchard , John W. Mitchell Viscous Fluid Flow by Frank White

<u>Websites</u>

eFluids.com

Wikipedia.org /wiki/Dimensionless_numbers_in_fluid_mechanics

Contact Info:

Mig-Tech Fluidics Design Principal: John Migniuolo Email: <u>john@fluidicsdesign.com</u> Phone: 914-241-2048